
5772 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

Inspecting End-to-End Encrypted Communication
Differentially for the Efficient Identification

of Harmful Media
Tengfei Zheng , Tongqing Zhou , Kai Lu , and Zhiping Cai

Abstract— Due to the immense benefits of guaranteeing user
privacy, popular messaging platforms have shown enthusiasm for
deploying End-to-End Encryption (E2EE). However, E2EE could
be misused for bypassing media moderation, opening a shortcut
for the viral spreading of harmful media. Private hash-matching
techniques are proposed to identify harmful content in E2EE.
Unfortunately, the pioneering solution incurs prohibitively high
latency due to redundant user-cloud interactions for a private
inspection. In this paper, we design Entbergen for efficient
inspection of E2EE media by differentially handling harmless
and harmful ingredients. For this, a novel Private-2D BloOm
filter with Fuzzy Query (PBO-FQ) is designed for local, agile, and
private media hash matching. It is proposed as the first structure
that adapts inverted index and differential privacy (DP) towards
seamless integration of sketch and mask encoding. With PBO-FQ,
Entbergen can instantly filter out harmless media and only pays
attention to the small-scale counterparts by scrutinizing them
privately based on homomorphic encryption. Security analysis
shows that Entbergen can effectively fulfil the desired privacy
requirements. Extensive evaluations demonstrate that Entbergen
is sufficiently efficient (w.r.t. computation and communication
overhead) for working on mobile devices and can easily scale to
real-world inspection with a large database.

Index Terms— End-to-end encryption, privacy-preserving,
data abuse, harmful media identification.

I. INTRODUCTION

END-TO-END encryption (E2EE) empowers and limits
the decryption right of messages to the expected recip-

ients. It provides an effective privacy defence against illegal
surveillance and eavesdropping as well as other human rights
abuses [1]. In recent years, E2EE has been adopted in many
popular messaging platforms, such as WhatsApp [2], Apple
iMessage [3], Facebook Messenger [4], and Telegram [5],
serving over 1 billion active users [6].

However, deploying E2EE poses significant challenges to
public safety, especially to the highly vulnerable members of

Manuscript received 29 November 2022; revised 7 July 2023 and 30 August
2023; accepted 6 September 2023. Date of publication 13 September 2023;
date of current version 25 September 2023. This work was supported in part
by the National Key Research and Development Program of China under
Grant 2022YFF1203001, in part by the National Natural Science Foundation
of China under Grant 62072465, Grant 62102425, and Grant U22B2005, and
in part by the Science and Technology Innovation Program of Hunan Province
under Grant 2022RC3061 and Grant 2023RC3027. The associate editor
coordinating the review of this manuscript and approving it for publication
was Dr. Pedro Comesana. (Tengfei Zheng and Tongqing Zhou contributed
equally to this work.) (Corresponding author: Zhiping Cai.)

The authors are with the College of Computer, National Univer-
sity of Defense Technology, Changsha, Hunan 410073, China (e-mail:
zhengtengfei@nudt.edu.cn; zhoutongqing@nudt.edu.cn; kailu@nudt.edu.cn;
zpcai@nudt.edu.cn).

Digital Object Identifier 10.1109/TIFS.2023.3315067

our societies, like sexually exploited children. In 2020, over
21 million online child sexual abuse materials (CSAM) were
reported to the US National Center for Missing & Exploited
Children (NCMEC) [7]. This harmful content is no niche
phenomenon and must be carefully identified at the source
to prevent it from viral spread on the Internet. One method
widely used on social platforms, such as Facebook [8] and
Youtube [9], is to check whether the user content is similar
to the known-harmful content. Nevertheless, such similarity
testing-based content checking would be ineffective in front
of E2EE traffic.

In 2020, the UK and EU presented their laws/strategies
to become more effective in fighting harmful online con-
tent [10], [11]. They especially require messaging platforms
to be able to detect and report harmful content transferred
in E2EE communication systems. Hence, it is imperative
to design technical solutions for enabling the inspection of
harmful media, especially without disclosing user privacy;
otherwise, these policies would cripple the hard-won privacy
victories of E2EE. Such a contradiction led to recent research
interests in the automated detection of harmful media in E2EE
communication.

Unfortunately, the pioneering solution of Kulshrestha and
Mayer [12] attains privacy-preserving inspection at significant
efficiency cost. At its core, the proposed private Hamming
distance computation technique incurs redundant server-client
communications for matching encrypted messages with the
harmful hash set. In practice, it will generally cost 27.5 sec-
onds to check one image against a moderate-size hash set
(i.e., 220), easily exhausting user patience with degraded
experiences. The follow-up work [13] proposes disclosing
certain information in user messages for efficiency gain, which
violates the privacy tenet of E2EE.

Intuitively, offloading media moderation from server to dis-
tributed clients1 is helpful to avoid redundant interaction with
the server. For this, a straightforward way is to send the homo-
morphically encrypted hash set2 for the local check. However,
it is still problematic in efficiency because checking one by one
involves significant computation. At this point, we hypothesize
that the de facto cause of inefficiency in existing E2EE
media moderation is that they indiscriminately check all
the traffic. In practice, although facing a growing amount of

1We specify client as the social application, working under the privacy
policy, on user devices.

2The harmful hash set includes sensitive individual information, which
should not be directly disclosed to the public.

1556-6021 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on April 17,2025 at 12:46:43 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-8206-5910
https://orcid.org/0000-0002-6620-1898
https://orcid.org/0000-0002-6378-7002
https://orcid.org/0000-0001-5726-833X

ZHENG et al.: INSPECTING E2EE COMMUNICATION 5773

harmful content, harmless media dominates social platforms.
Performing tedious inspections on tons of healthy media brings
no gain to either user privacy or public moderation. Hence,
we are motivated to attain efficiency by putting more effort
into the harmful ingredient and agilely bypassing the harmless
ones during the inspection.

This work then focuses on a differential inspection solution
for efficient identification of harmful media with a dedicated
framework Entbergen.3 Basically, Entbergen adapts the linear
matching and no-false-negative property of probabilistic data
structure (e.g., Bloom filter) to agilely filter out harmless
media and perform a deterministic and complex inspection on
the small portion of matched (suspicious) contents. Neverthe-
less, to jointly accommodate efficiency and privacy, we have
to handle two aspects of challenges: 1) The support for
approximate matching. Existing probabilistic data structures
are only designed for exact matching between a query and
the hash set. 2) Privacy preservation of the harmful hash set
that is supposed to be unrevealed. Probabilistic data structures
like Bloom filter are susceptible to differential attacks. Namely,
given specific auxiliary information, an attacker is able to infer
some hash values that have been inserted into the filter [14],
partially leaking the harmful hash set of sensitive images.

To address the challenges, Entbergen is constructed on a
novel structure of Private-2D BloOm filter with Fuzzy Query
(PBO-FQ). First, PBO-FQ uses bit-wise masks to statistically
ignore the certain number of bits in an image’s hash (likened to
sampling) and maps a set of random-masked hashes for each
image into PBO-FQ. In this way, the filter is enabled to query
approximately matched hashes (Challenge #1). Second, dif-
ferential noises are injected into the constructed filter to resist
the differential attacks from revealing the harmful hash set and
its sensitive pre-images, theoretically ensuring its differential
privacy (Challenge #2). Third, we attach the encoding indices
of the masked hashes (inverted index) to the filter, in the form
of a link list, for quickly locating the matched harmful images.
Fourth, in order to further minimize costs, our system utilizes
a probability data structure called the 2D Bloom filter (2DBF),
since it is independent of the number of hash functions.
Basically, PBO-FQ integrates the encoding technique [15] into
2D Bloom filter [16] towards privately offloading sensitive
hash set to the local zone for efficient media matching.
To further enable robust and secure identification in the system
view, PBO-FQ introduces the inverted index on encoded hash
strings for later online identification and adds differential noise
with controllable strength to yield provable privacy protection.
Such adaptation and calibration on the initial integration make
PBO-FQ a holistic pipeline.

Based on the response of the PBO-FQ, Entbergen can
instantly judge whether a ready-to-send image is suspicious or
not. Latency-aware homomorphic encryption [17] and random-
ization means are then used to determine whether a suspect
is actually a harmful one. In summary, this paper makes the
following contributions:
• We design a novel probabilistic data structure PBO-FQ

dedicated to harmful media moderation on E2EE data.

3The word Entbergen comes from Martin Heidegger’s exposition of truth,
which means bringing something from concealment into un-concealment.

It supports fuzzy query with tunable matching accuracy and
satisfies ϵ-differential privacy.
• We propose the Entbergen framework by using PBO-FQ

for differential inspection and adapting the Paillier cryp-
tosystem [17] for harmful media identification. Entbergen is
realized as the result-revealed and result-unrevealed protocols,
which provide users with different levels of privacy protection
to meet discrepant requirements of harmful media identifica-
tion in practical deployment.
• We implement and evaluate Entbergen in a mobile com-

puting environment. Experimental results indicate that the
proposed schemes provide an average of 36x speedup in
the execution time, compared with the baseline, and require
0 additional communication costs in cases where the shared
media is harmless. Otherwise, for cases where a user sends
a harmful image, the proposed schemes can also provide a
9-15x speedup in the execution time and significantly reduce
the communication cost by 176-243 times.

II. BACKGROUND AND EXISTING APPROACHES

A. Harmful Content Moderation
For over a decade, law enforcement and civil soci-

ety stakeholders worldwide have collected and constructed
several known-harmful media hash sets, which embody
CSAM [18], [19], [20], missing children material [21],
and extremist material [22], totalling millions of images
and videos. These hashes are obtained by proprietary per-
ceptual hash functions (PHFs) like PDQHash [23] and
PhotoDNA [24], which can map similar media to unique hash
representations that have small distances.

Currently, the predominant approaches for inspecting harm-
ful media in large messaging platforms (e.g., Facebook and
YouTube) rely on the known harmful hash set. A content
moderation party can quantify the similarity between a harmful
hash set B and the shared media’s hash w relying on the
Hamming distance metric dH (·, ·). The media is identified
as harmful if the Hamming distance is less than a fixed
similarity threshold δH . A typical application of this method
is Facebook’s ThreatExchange service [25].

However, sending the hash value w to a third party has
privacy risk, as w may have a known preimage, and PHF
constructions usually leak information about the media con-
tent [26]. An adversary at the third party could brutally
match a received hash with a pre-image-hash database to
guess the original media. Hence, these hash values and the
media plaintext are equivalently sensitive in terms of privacy,
making hash-based approaches stand in tension with E2EE
technologies.

B. Inspecting Media in E2EE
Drawing upon an extensive range of cross-disciplinary liter-

ature, Scheffler and Mayer [27] systematically investigate the
domain of content moderation in end-to-end encrypted (E2EE)
systems. They present a comprehensive content moderation
pipeline process and offer valuable insights into potential
system designs as well as open challenges in the E2EE context.
Their work serves as a valuable resource for researchers
seeking guidance in this area. As mentioned in [27], when

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on April 17,2025 at 12:46:43 UTC from IEEE Xplore. Restrictions apply.

5774 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

examining media in an E2EE context, it is essential to consider
the privacy not only of users’ shared content but also of
the harmful hash set B. The disclosure of B would cause
sensitive content evasion, moderation techniques disclosure,
and legal liability to the administrative institutes. To this end,
a straightforward method that quantifies the similarity between
hashes to alleviate privacy risks is using the 2PC protocols.
Existing 2PC protocols [28] for similarity matching can ensure
that both the privacy of client media and the harmful hash set
is not compromised. Unfortunately, these protocols can not
efficiently scale to large databases.

1) Private Membership Computation: The First Scheme:
In 2021, Kulshrestha and Mayer described a client-server
protocol to explore the technical feasibility of inspecting
harmful media for E2EE services for the first time [12].
At the beginning of the protocol, they map similar items in
B to the same bucket using locality-sensitive hashing (LSH)
techniques. Private information retrieval is employed to assist
the client in privately retrieving a set of encrypted buckets that
contain hashes similar to w from the server. The client then
performs computation on the encrypted hashes and returns
ciphertexts to the server. Finally, the server can learn the result
of the matching (equality) tests.

However, the scheme is prohibitively expensive, which
requires 27.5 seconds to check the similarity of one image
against a database with the size of 220. While the scheme
skips 2PC’s drawbacks, it still cannot meet the needs of actual
deployment.

2) Bucketing Technique: The Gain And The Loss: An alter-
native solution focuses on client-side harmful detection [13].
Inspired by the previous work [12], this scheme first gathers
possibly relevant images to a bucket and then performs a
similarity testing protocol over the bucket. The basic workflow
can be described as follows: apply a standard PDQHash to an
image, choose a designated number of bit indices randomly,
flip each selected bit with a certain probability, and then send
these bits and their indices to the server. The server then
returns those harmful hashes with a distance smaller than a
coarse threshold δH to the client. Experimental results show
that this proposal significantly reduces the latency and required
bandwidth.

Nevertheless, this scheme is insufficiently private, as it
explicitly leaks some client data information to the platform
to trade off client privacy for efficiency. In front of the
advanced attacks (e.g., membership inference) on data sharing,
such leakage of clients’ information constitutes a series of
vulnerabilities on E2EE, breaching its security guarantee to
clients.

3) Apple PSI: Detecting Encrypted CSAM in iCloud: Apple
recently announced a CSAM detection system based on its
deep perceptual hashing algorithm NeuralHash [29]. To detect
CSAM, Apple first encodes images in user files uploaded
to Apple’s iCloud service into perceptual hashes using Neu-
ralHash. A private set intersection will then be performed
between the encoded hashes and a database containing CSAM
hashes. The matched images are revealed to Apple when the
number of matches exceeds a certain threshold. Intuitively,
Apple’s work can be applied to inspect harmful media in the
E2EE communication system by setting the threshold to 1.

However, the protocol only sustains exact hash matching.
Namely, the criterion of identifying an image as harmful is
dH (w, b) = 0, where b is an item in B. Instead, we focus
on approximate hash matching, a more robust criterion that
allows dH (w, b) to be less than a fixed threshold δH (δH ≥ 0).
For actual deployment, due to the official NeuralHash model
being inaccessible, its latency remains a question to explore
in evaluation.

4) Passive Inspection: Another line of work inspects E2EE
media passively. It only inspects content reported by the
recipients [30]. However, such solutions may not be suitable
for CSAM, where the message’s recipients can also be the bad
actors. Unlike this work [30], Entbergen focuses on a proactive
inspection strategy to handle general harmful content.

5) Trust In the Hash Set and Implementation: In light of
the trust concerns in the hash set and system implementation,
Scheffler et al. [31] contribute three novel cryptographic pro-
tocols by integrating standard cryptographic primitives such
as advanced encryption standard and zero-knowledge proof.
These protocols enable three types of public verification for
perceptual hash matching systems: 1) prove that each ele-
ment of the harmful hash set was built from safety groups,
2) demonstrate the absence of specific lawful content in hash
sets, and 3) notify users of any false positive matches. Given
that our proposal intends to identify harmful media in E2EE
efficiently, we state that further orthogonal efforts could be
integrated for a more robust system, while the trust concerns
are out of the scope of our focused context.

In summary, all these existing approaches use media’s sim-
ilar representations (hash value) as client requests and employ
an interactive client-server protocol to calculate the Hamming
distance between the shared media’s hash and the harmful
hashes privately. They shared two drawbacks in practice:
On the one hand, these schemes require multiple rounds of
interaction between the client and the server to identify a
piece of media, resulting in high latency for users to send
data, especially considering unstable network delays. On the
other hand, they waste lots of computation for weak mobile
devices to perform the tedious inspection for every piece of
media, most of which are harmless.

C. Probabilistic Data Structure

Bloom filter (BF) [32] is a probabilistic data structure
used to represent set membership. Based on the standard
BF, researchers have developed a series of variants applied
to a wide range of domains. For details, we refer readers
to [33], [34], and [35]. The BF variant most relevant to
our work is 2-Dimensional Bloom Filter, which is charac-
terized by faster query time, lower memory size, and higher
accuracy [16], [36].

1) About Fuzzy Query: Standard BF and its variants do
not support fuzzy queries. They ignore the potential hits
of approximate items, since uniform and independent hash
functions (e.g., MD5 and SHA-1) are used to provide boolean-
based answers. Hua et al. [37] propose an LSBF structure that
replaces conventional random and independent hash functions
with locality-sensitive hash functions [38]. However, it shows
poor performance on query time and a false negative rate in

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on April 17,2025 at 12:46:43 UTC from IEEE Xplore. Restrictions apply.

ZHENG et al.: INSPECTING E2EE COMMUNICATION 5775

Fig. 1. Overview of the Entbergen framework.

high-dimensional Hamming space. Thus, it is unsuitable for
harmful media identification with a set of high-dimensional
hash vectors as input.

2) About Private BF: Some schemes utilize the false pos-
itives caused by potential hash collision to provide privacy
protection for the original data [39]. However, an attacker, with
sufficient computational resources and auxiliary information,
could compromise the protection provided by the collision
with high possibilities through reconstructing the filter’s con-
tent. As a remedy, Xue et al. [14] propose a BF perturbation
method by using the DP technique to relieve the weakness
of deterministic probability in BF encoding techniques. Their
scheme can satisfy the strong guarantee of ϵ-DP. Inspired by
their scheme, we adopt DP in PBO-FQ to prevent hash-pre-
image inference but inject random noise on a 2D BF.

III. SYSTEM OVERVIEW AND PRELIMINARIES

A. System Model
Entbergen is built on top of an E2EE messaging system

and is invoked when users transmit media through the E2EE
channel. The framework of Entbergen is shown in Fig. 1,
which involves three kinds of entities: a user who commu-
nicates with others through E2EE service, a client installed
on the user’s smartphone device, and a server that provides
the content moderation service, which could be the messaging
platform or a third party. The server holds a known harmful
hash set B. D denotes the designed filter PBO-FQ, which is
the private and compact representation of B offloaded to the
client.

From a high-level view, when a user intends to send media,
the client on it first performs a local check by querying the
media’s hash w to the downloaded filter PBO-FQ, which
has the harmful hash set privately encoded. If the media is
identified as harmless, it can then be normally transferred
to the recipient through the E2EE service. In this case, our
framework with the instant local check is believed to incur
small latency and will generate no additional communication
for inspecting the media. Otherwise, the ready-to-send media
is identified as suspicious by the filter and needs to go through
a deterministic inspection. Note that we use suspicious media
to denote those that do not pass the filter, for that false positives
are the by-products of our filter. The crux here is to instantly
categorize a media as harmless and suspicious to avoid
the tedious inspection for definitely health media, namely,
the differential property of Entbergen. Finally, the client
and the server ‘sentence’ the suspects using homomorphic
encryption (HE).

The DP and HE means are jointly utilized in Entbergen for
differentially inspecting harmful media, i.e., benign content
merely undergoing local check with the DP-perturbed filter
and suspicious content further being scrutinized by HE-based
matching. On one hand, DP is used to preserve the privacy
of harmful hash set against differential attacks during local
check (Algorithm 2 in Sec. IV). For this, utilizing HE in
this stage not only cannot resist the differential attacks, but
also ruins the intention of using Bloom filter for efficiency.
On the other hand, HE is adopted to keep the to-be-verified
suspicious hashes unclosed during server-client interactive
verification (Fig. 4 in Sec. V). Adding DP noise cannot
secure the privacy of a single hash and would mislead the
exact distance calculation, thus is not suitable at this stage.
Therefore, DP and HE are not replaceable for each other in the
design.

We emphasize that by relying on local check and differential
inspection, Entbergen shows superior scalability regarding
media sharing actions and the scale of harmful hash sets. The
underlying reason is that the number of harmful user media is
always relatively small compared with users’ daily and healthy
communications. Provided with limited resources on mobile
devices, we should pool them on the principal moderation
tasks.

B. Security Definition
In this work, we follow the static non-colluding and semi-

honest security model and privacy requirements in [12] for
harmful media identification.

1) Privacy Goals: Inspecting harmful media in E2EE com-
munications has the following privacy requirements.

a) Content privacy: In light of the hash values of media
and media plaintext are equivalently sensitive in terms of
privacy, the shared media content and its hash w should be
confidential. Revealing these plaintexts to the server stands in
tension with E2EE communications.

b) Database privacy: The known harmful hash set B
should be confidential. It is important to keep database privacy
as it embodies sensitive and illegal contents, for example,
CSAM. Disclosing such content could lead to prejudice,
enable malicious users to evade supervision, or even cause
legal liability.

c) Result-revealed and unrevealed privacy: We consider
two privacy levels for the identification result: result-revealed
and result-unrevealed. When the shared media is identified as
suspicious, a result (i.e., whether w is similar to an item in B)
is presented. In some situations where the sender of media
content can be a bad actor, the result should be revealed to
the server to assist in taking vigorous actions to help victims
and combat criminals (result-revealed). However, revealing the
result provides a backdoor to the server to monitor whether
clients shared any media on a chosen watch list. To this end,
an alternative scheme is to have only the client learn the result,
enabling client-side notifications, warning or informing users
when they share harmful media (result-unrevealed).

For the above considerations, two schemes are proposed
in this paper. However, we do not take a position on which
scheme should be deployed given the user privacy and security,
human rights, and legal and ethical requirements.

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on April 17,2025 at 12:46:43 UTC from IEEE Xplore. Restrictions apply.

5776 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

2) Security Model: We clarify the security boundary of our
work from the following aspects.

a) The behavior of the entities involved: The involved
entities in the proposed schemes are honest-but-curious.
Namely, the entities will faithfully perform the designated
protocol. However, they could launch passive attacks, i.e., the
client and the server would take a stab at accessing the harmful
database and the shared media content, respectively. Moreover,
the client and the server are non-collusion. The client would
not reveal users’ media content and its corresponding hash to
the server.

Like prior work [12] and [13], Entbergen essentially uses the
perceptual hashing of media content, so its security boundary
is fundamentally limited to semi-honest security. Entbergen
would fail when a user maliciously damages the perceived
characteristics of the media to eliminate the similarity in
Hamming space. While the security model appears lax, per-
ceptual hashing matching (PHM) has been proven valuable for
identifying harmful content because of its high efficiency and
ease of deployment. PHM is widely used by communication
services, law enforcement agencies, and child safety groups
today [7], [29], [40].

b) The local-check procedure: We highlight that the
local-check procedure is encapsulated and executed by default
on the client (i.e., the software of the end mobile device),
which can be regarded as a secure enclave. Our protocol is
agnostic to how to protect the client’s security, but a client
should be designed to possess the capability of preventing
user tampering. Moreover, the client would not disclose any
information about users’ shared content to the server, as the
provisions of privacy policies ban it.

c) Intermediate information of system operation: To
check whether a shared image is harmful, the Hamming
distance between the shared image and the corresponding
matched image is examined, which would be either revealed
to the server (in the result-revealed scheme) or the client (in
the result-unrevealed scheme).

First and foremost, it is noticed that the vast majority
of harmless images can be filtered by local check without
Hamming distance producing. Only shared images categorized
as suspicious, including true positives and about 0.1% false
positives, would undergo the deterministic inspection that
produces the Hamming distance.

The intermediate information, i.e., the Hamming distance,
increases the system’s attack surface. First, membership
inference attacks can be conducted by the client/server
based on the knowledge of the Hamming distance. Given
that this paper aims to infer whether an image belongs
to the harmful dataset, a.k.a. membership inference, such
attacks are inevitable in the proposed scheme. Second, the
client/server can obtain the original harmful/shared image
content by inferring the raw hash value. We analyze this
attack’s difficulty based on scenarios involving true and false
positives.

For images I mga and I mgb, suppose their perceptual hash
values are x and y, respectively, and the Hamming distance
between x and y is △. In practice, a similarity threshold δ

is required to be set to determine if two images are similar.
Assuming there is a curious client or server A, possessing the

information about I mga , x , △, and δ, attempts to obtain the
information about y to infer I mgb.
• When I mga is a true positive, △ ≤ δ. A then can imme-

diately assert that I mgb = I mga , due to the perceptual
hash function’s robustness.

• When I mga is a false positive, △ > δ. If adversary A
tries to infer the context of I mgb, A requires obtaining
the exact y. Let P be the probability of guessing y, then
P can be computed as follows.

P =
1

C△l
=
△!(l −△)!

l!
, (1)

where ! denotes factorial operation, l denotes the length
of perceptual hash. Since △ > δ, then, we can further
obtain,

P <
δ!(l − δ)!

l!
. (2)

We acknowledge that in cases where l and δ are small,
A can guess y through the Hamming distance. However,
in light of accuracy, l is typically greater than or equal
to 128, δ is usually set to 10% of l. In such a parameter
setting, P is almost zero.

Based on the above analysis, we can deduce that inferring
the content of I mgb solely based on the Hamming distance is
challenging unless I mga and I mgb exhibit inherent similarity.

C. Technical Preliminaries

The technical tools employed to build the proposed scheme
consist of sampling, the 2-dimensional Bloom filter, DP, and
the Paillier cryptosystem. We present the implementation
details of the above techniques in Appendix to make this paper
self-contained.

IV. PBO-FQ FOR LOCAL CHECK

By incorporating encoding with 2D Bloom filter and intro-
ducing Laplace-based DP and inverted index, PBO-FQ is
proposed that reconciles fuzzy query and privacy properties at
low cost. Designing PBO-FQ as a cohesive system necessitates
tightly integrating all these components into a functional
pipeline, making it challenging. This section describes the
design rationale and detailed construction process of a novel
probabilistic structure of PBO-FQ.

A. Basic Idea

1) For Fuzzy Query: In inspecting media in E2EE, the cri-
terion for a media M to be considered harmful is dH (w, bi) ≤

δH . Hence, PBO-FQ should support fuzzy query, i.e., “Is w

approximate to an item in B?”. Knowing that BF does not
support approximate matching, we propose to soften the exact
matching of a media to a set of approximate matching of its
subsampling one. To this end, we first encode each item bi
in B to a set Si ← Encode(bi), and then combine each
generated set to attain S (where S = S1 ∪ S2 . . . ∪ Sn)
to a BF. Similarly, for an incoming item w, we can encode it
to a set S ′. Then we determine whether w is similar to any
item in B by checking how many items of S ′ are in the BF.

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on April 17,2025 at 12:46:43 UTC from IEEE Xplore. Restrictions apply.

ZHENG et al.: INSPECTING E2EE COMMUNICATION 5777

Fig. 2. An illustrative example on the offline construction ((a)-(c)) and the online using process ((d)) of PBO-FQ with |B| = 3, t = 2, T = 3, x = 3, y = 5,
and σ = 9. H(·) is a hash function (e.g., SHA256), and mod denotes the modular operation.

If more than t items of S ′ are in the BF, then we denote
w and a certain item bi ∈ B is hamming-close, similar to
the criterion used in [15]. Hitherto, we can achieve the fuzzy
query function.

2) For Privacy Preservation: Such a manner cannot
meet database privacy introduced in Section III-B. Although
the probabilistic data structure of BF can provide certain
privacy protection by sacrificing matching accuracy, the pri-
vacy guarantee is limited [14]. W.h.p., the filter’s content
(i.e., hash values) could be reconstructed with specific
auxiliary information, then subsequently the confidential
pre-images of these hashes could be compromised by brute
force if an attacker has sufficient computational resources. Tar-
geting this privacy requirement, a DP perturbation method [14]
is applied to ensure that the filter satisfies ϵ-DP.

3) Questioning the Suspects: Adding perturbation noise
into the PBO-FQ filter results in an unexpected increase in
false positives (i.e., identifying health media as suspicious).
Notifying users or blocking sharing actions when they transmit
harmless will seriously damage users’ online social expe-
rience. PBO-FQ is then responsible for providing a way
to verify whether w is actually harmful (i.e., questioning)
when it is identified as suspicious. For this, we record each
item’s indices in a linked list corresponding to the bit-position
where the item is mapped for locating the matched item, thus
quickly questioning the suspects in the follow-up operation
(See Section V). However, our experiments found that the
filter may return multiple indices, making hash-locating errors.
This is caused by cross-overlap between sampling sets Si ,
as illustrated in the following toy example. To address this
problem, we further compare the number of occurrences of
each returned index with the threshold value t to locate the
matched item correctly.

Example. Suppose hashes b1 = 10101 and b2 = 01010 are
the items in B, while mask1 = 01100, mask2 = 10001, and
mask3 = 01010 are three generated masks. b1 and b2 can
be encoded to hash set S1 = {001001, 100011, 100001} and
S2 = {010002, 000002, 010102}, respectively. The subscript
represents the index of each item. Then, the items in S1 and
S2 are mapped to a BF. Assume δH = 1 and t = 2 in the filter
settings. When receiving a query with item w = 00110, it can

be encoded to the set S ′ = {00100, 00000, 00010} using the
identical masks. We will locate b1 and b2 after querying each
item in S ′, but w is not similar to either of them.

4) Reducing Cost: Encoding an item to a set Si results in
an increase in the number of time-consuming hash computa-
tions to query an item, i.e., from O(k) to O(kT) (suppose
k is the number of hash functions used in BF). To further
reduce the query cost, our final design replaces the BF
with 2DBF [16] as 2DBF is independent of the number of
hash functions compared to any other variants. We thus can
reduce the number of time-consuming hash computations from
O(kT) to O(T).

B. Construction of PBO-FQ
We use D to denote an instantiated PBO-FQ. D is organized

by a tuple
(
Bx,y, L

)
, where Bx,y is a 2-dimensional array and

L is a linked list set. Bx,y contains x × y cells and each cell
is σ -bits. L is a set of empty linked lists, and the header of
each linked list corresponds to a bit in Bx,y .

D is composed of three subroutines: Inserting
(Algorithm 1) is invoked upon arrival of each item to
insert it into D ; Perturbing (Algorithm 2) focuses on
protecting the privacy of B; Lookup (Algorithm 3) is
invoked to query whether a new item is similar to any item
in set B. An example of the offline construction of PBO-FQ
((a)-(c)) and the online using ((d)) process with |B| = 3,
t = 2, T = 3, x = 3, y = 5, and σ = 9 is shown in Fig. 2,
where T is the number of masks, and t is a given threshold
value of sampling. The details of each algorithm are described
as follows.

1) Inserting: When inserting B into D , Inserting first
processes B as the following. First, Inserting encodes each
item bi to a set Si ← Encode(bi). Second, Inserting builds
an inverted index [41] for each item in S (S = S1∪S2 . . .∪

Sn). We use M to denote the set of an item bi ’s inverted
indices. The process of encoding with |B| = 3 and T = 3 is
shown in Fig. 2 (a). Figure 2 (b) illustrates the process of
constructing the inverted index for items in S1, S2, and S3.

Upon the arrival of an item e in S , Inserting finds the bit
where e is mapped by computing H(e) (H(·) is a hash func-
tion) and three modulus operations (lines 5-6 in Algorithm 1).

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on April 17,2025 at 12:46:43 UTC from IEEE Xplore. Restrictions apply.

5778 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

Algorithm 1 Inserting Subroutine of PBO-FQ
Require: Bx,y ← 0, an empty list set L, S ← 0

1: procedure INSERTING(e)
2: S ← Encode(B)

3: M ← InvertedIndex(S)

4: for each item e in S do
5: h← H(e)
6: i ← h mod x , j ← h mod y, p← h mod σ

7: acquire index set I nde of e from M
8: Bi, j ← Bi, j ∨ (1≪ p) ▷ set desired bit to 1
9: append I nde to Li, j,p

10: end for
11: return

(
Bx,y, L

)
12: end procedure

Algorithm 2 Perturbing Subroutine of PBO-FQ
Require: B′x,y ← 0, an empty list set L′, probability value

π ∈ (0, 1)

1: procedure PERTURBING(Bx,y , L)
2: Generate the Laplace distribution noise data L =

{l1, l2, . . . , ln} where n = x ∗ y ∗ σ

3: Let F (δ) = π to compute the threshold value δ,
where F is the cumulative distribution function of L

4: for m = 1 to n do
5: if lm ≥ δ or lm ≤ −δ then
6: i = m/(y ∗ σ) ▷ / denotes quotient operation
7: j = (m/σ) mod y
8: p = m mod σ ▷ map lm to a certain bit
9: B′i, j ← B′i, j ∨ (1≪ p)

10: append random indices to L′i, j,p
11: end if
12: end for
13: Bx,y ← Bx,y ⊕ B′x,y , L← L ∪ L′
14: return

(
Bx,y, L

)
15: end procedure

After that, Inserting sets the bit to 1 and records the inverted
indices of e in a linked list corresponding to the bit. The
process of inserting an item into PBO-FQ is illustrated in
Inserting (Algorithm 1). Figure 2 (c) gives an illustrative
example on the inserting operation (Inserting(e2)), where
H(e2) = 19.

2) Perturbing: The process of perturbing is illustrated in
Algorithm 2. To protect the privacy of the original hash in B,
a DP perturbation method [14] is introduced to PBO-FQ. The
technical pivot of [14] is to convert Laplace noise in floating
points to 0 and 1 based on a preset probability value/noise
budget π . Specifically, it first generates the Laplace distribu-
tion noise data L with location parameter µ = 0 and scaling
parameter λ = 1, where |L | = x ∗ y ∗ σ . Given L , we can
obtain its cumulative distribution function F by computing:

F (x) =

∫ x

−∞

f (u)d(u) =

1
2

exp (x), x < 0

1−
1
2

exp (−x), x ≥ 0
. (3)

Algorithm 3 Lookup Subroutine of PBO-FQ
Require: An empty set Lw

1: procedure LOOKUP(w)
2: Sw ← Encode(w)

3: if Bx,y == 0 then
4: return lookup failure
5: end if
6: for l=1 to T do
7: hl ← H(el)

8: il ← hl mod x , jl ← hl mod y, pl ← hl mod σ

9: Flagl ← (Bil , jl ∧ (1≪ pl))≫ pl
10: if Flagl == 1 then
11: Lw = Lw ∪ Lil , jl ,pl

12: end if
13: end for
14: Num, I nd = Max.Count(Lw)

15: return Num and I nd
16: end procedure

Based on π and F , we then can select a positive threshold
value δ, e.g., suppose π = 0.2, let F (x) = 1 − π/2, then
we have δ = x = 1.61. If l ≥ δ or l ≤ −δ (l ∈ L), the
Laplace noise l will be converted to 1. Otherwise, the noise
will be converted to 0. However, since such generated noise
data is one-dimensional, it cannot be directly mapped to a
two-dimensional filter. We then organize the one-dimensional
noise data into two-dimensional according to the dimensions
of B′x,y (lines 4-9 in Algorithm 2). Meanwhile, the random
indices will be appended to the linked list corresponding to
the bit renovated to 1. Finally, Perturbing computes Bx,y =

Bx,y⊕B′x,y and L = L∪L′ to output the final filter. A simple
example of PBO-FQ after Inserting and Perturbing with
x = 3, y = 5, and σ = 9 is shown in Fig. 2 (c).

Note that other mechanisms, e.g., random response and
Gaussian noise, can also be applied to PBO-FQ for privacy
protection purpose. Since we focus on constructing a filter that
satisfies differential privacy, we only present an instantiation of
PBO-FQ based on the Laplace method and prove the privacy
property accordingly. Exploring which mechanism is more
efficient is not within the scope of this study. We would like to
point out that the bit-flipping operation for perturbing Bloom
filter in PBO-FQ is also a form of random response.

3) Lookup: The lookup operation is illustrated in
Algorithm 3, which fails when Bx,y is empty. When looking up
a new item w, Lookup first encodes w to a set Sw by invoking
Encode(·). Each item in Sw can be determined whether it has
been inserted into the filter by computing Flag for them (lines
6-9 in Algorithm 3). If Flagl equals 1, Lookup then records
the el ’s indices stored in linked list into Lw by union operation.
Finally, Lookup counts the number of occurrences of each
index in the set Lw and returns the max count Num and the
corresponding index I nd.4 If Num is greater than or equal to
t , meaning that w is similar to an item bI nd . Otherwise, w is
not similar to any item in B. Fig. 2 illustrates the process of
Lookup, where the image’s hash is 101011. After performing

4We use Max.Count(·) (line 14 in Algorithm 3) to denote this operation.

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on April 17,2025 at 12:46:43 UTC from IEEE Xplore. Restrictions apply.

ZHENG et al.: INSPECTING E2EE COMMUNICATION 5779

Lookup, we can obtain Num = 2 and I nd = 1. Since
Num ≥ t , the image will be identified as similar to b1.

C. Analysis on PBO-FQ

1) Differential Privacy: The designed filter PBO-FQ can
provide ϵ-DP assurance for original data B. The privacy of
B is preserved by a two-step process in our design. First,
each item in B is hash-mapped to compose the filter, which
avoids exposing plaintext hash directly to the client. Although
the collision of different elements mapped to the same bit
position can provide privacy protection for B, it is limited and
vulnerable to membership attacks and differential attacks. For
this, the second step is adding noise generated from Laplace
distribution data to the output of PBO-FQ.

Assume D is the original filter without perturbing, the
probability of D outputting 1 is f , and 1− f is the probability
of D outputting 0. To quantify the noise impact of π on the
output of the filter, we introduced the following theorem.

Theorem 1: The constructed PBO-FQ satisfies ϵ-
differential privacy where ϵ = ln f

(1− f)π
.

Proof: Let the output of D be d =
{
d1, d2, . . . ,

di , . . . , dn
}

(n is the length of D), D∗ be the perturbed D with
Laplacian noise added, and d∗ =

{
d∗1 , d∗2 , . . . , d∗i , . . . , d∗n

}
denotes the output of D∗.

For each element in the filter, the probability of observing
D∗ output 1 when D output 1 is:

P(d∗i = 1|di = 1) = f · (1− π)+ f · π = f. (4)

The probability of observing D∗ output 1 when D output
0 is:

P(d∗i = 1|di = 0) = (1− f) · π. (5)

Based on the above two cases, we can obtain:

exp(ϵ) =
P(b∗i = 1|bi = 1)

P(b∗i = 1|bi = 0)
=

f
(1− f)π

. (6)

Then, we have ϵ = ln f
(1− f)π

. □
The proof indicates that the perturbation method of adding

0 or 1 in D based on threshold-Laplace distribution noise
satisfies the DP. From Eq. 6, we find that larger π leads
to smaller ϵ under a given f , which means that more noise
inserted facilitates stronger privacy protection strength. On the
other hand, larger f leads to larger ϵ under a given π , which
means that excessive numbers of 1 in D will weaken the effect
of perturbation caused by noise data, thus hindering privacy
protection.

In order to strike a balance between accuracy and privacy,
we adopt a strategy that prioritizes privacy while still maintain-
ing a reasonable level of accuracy to choose the optimal π .
Namely, we first establish a bound on the desired accuracy,
e.g., in the proposed scheme, we set a requirement to keep
the FPR below 0.1%. With this accuracy threshold defined, the
optimal π is the maximum value of π that could satisfy these
accuracy requirements (larger π , better privacy in Theorem 1).

2) Accuracy: The false positive (FP) and false negative
(FN) are the main yardsticks of the accuracy of the BF and its
variants, which also are optimization objectives in the solutions
proposed to engineer high-accuracy filters. In contrast to them,
we trade off accuracy for privacy in the design of our filter.

FP events enable the privacy protection feature, where the
higher the false positive rate (FPR), the better the privacy
protection effect. In our design, FP is mainly caused by
adding noise to the output of the filter. The internal link
between privacy protection and noise budget π is explored
in Section VI-C.1. The standard 2DBF does not produce FNs,
but PBO-FQ possibly produces FNs caused by the sampling
operation introduced for the fuzzy query. We continuously
optimize the sampled bit, t and T to eliminate FNs to reduce
false negative rate (FNR). Section VI details the results on the
FNR and FPR caused by sampling operation with different T
and t .

V. DESIGN OF ENTBERGEN

A. Syntax
The proposed Entbergen consists of four algorithms: Setup,

NewUser, LocalCheck and Verification. When users share
a media through E2EE, the client first checks whether there
exists b ∈ B, such that dH (w, b) ≤ δH depending on the
designed filter PBO-FQ. However, perturbation data added
into PBO-FQ results in some false positives. Thus, we further
design a Verification algorithm to eliminate false positives.
With these four algorithms, Entbergen’s false positive rate is
equal to 0.

The syntax of Entbergen is defined as follows:
• Setup(B, pp) → (D, pks, sks). The server runs this

algorithm at the system setup. With the input of public
parameters pp and harmful media dataset B, it first
constructs the PBO-FQ D by invoking Inserting and
Perturbing. It then generates a server key pair (pks, sks).

• NewClient(pp) → (D, pkc, skc). NewClient is a pro-
tocol between a new client and the server to register
that client in the system. On success, the server should
offload D to the client, and the client generates a client
key pair (pkc, skc).

• LocalCheck(D, w) → (Num, I nd). The client runs
this algorithm as the user shares media. With the input
of D and the shared media’s hash w, the client checks
whether the w is similar to the item in B by invoking
Lookup. Upon successfully completing the algorithm,
the client gets Num and I nd, with Num bigger than
the pre-defined threshold, asserting that w is harmful
media. If the media is identified as suspicious, the
client would invoke Verification algorithm. Otherwise,
the media would be transferred to the recipient.

• Verification(I nd, w, bI nd) → dH (w, bI nd). Verification
is an interactive algorithm between the client and the
server and would be awakened when the w is identified
as suspicious by LocalCheck. This algorithm eliminates
the FP by privately computing the Hamming distance
dH (w, bI nd) between w and its similar item. The server
can learn dH (w, bI nd) in the result-revealed scheme,
but only the client can learn dH (w, bI nd) in the result-
unrevealed scheme.

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on April 17,2025 at 12:46:43 UTC from IEEE Xplore. Restrictions apply.

5780 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

Fig. 3. The offline pre-processing phase of Entbergen.

Fig. 4. The online identification phase of the result-revealed scheme.

We emphasize that the differential property of Entbergen
is as: the harmless media dominating social networks can
be filtered by LocalCheck at little cost (only perform the
hash operation and need 0 communication overhead), while
the remaining suspicious media requires invoking a slightly
complex algorithm, i.e., Verification, to be further inspected.

In the Verification phase, a major tool that we use is an
additively homomorphic cryptosystem. Given two ciphertexts
E(m1) and E(m2), this tool enables to compute E(m1 +m2),
or compute E(c · m1) for any known constant c, without the
knowledge of the private key. By sending an encrypted random
value to the client in advance for further optimization, we can
free the client and server from executing the computationally
expensive encryption algorithm. W.l.o.g., we use the Paillier
algorithm [17] to instantiate the proposed schemes. Note that,
although the GM algorithm [42] can be directly applied to
privately compute the Hamming distance using XOR homo-
morphic property, its encryption operation must be performed
by the client and server, resulting in additional latency.

B. Instantiation of Result-Revealed Scheme
The result-revealed scheme consists of the offline

pre-processing and online identification phases, described in
Fig. 3 and Fig. 4. In the offline pre-processing phase, Setup

and NewClient are conducted by the server and the client,
respectively. Before establishing the system, the server con-
structs the PBO-FQ D . Upon successful user registration, the
server offloads D to the client. The server and the client
generate their own key pair (pks, sks) and (pkc, skc) using
the Paillier cryptosystem [17], respectively.

In the online identification phase, LocalCheck is first
conducted on the client side. When a user shares media M , the
client computes its perceptual hash w = P DQ(W) utilizing
PDQHash [23]. Note that B is constructed by the same
perceptual hash function, and w and b ∈ B have the same
length l. To check whether w is similar to an item in the
known harmful hash set B, the client invokes Lookup and
then obtains Num and I nd. If Num is smaller than t , M is
identified as harmless and can be transmitted to the recipient
through E2EE. If Num is greater than or equal to t , M is
identified as suspicious. As the perturbation is added into D ,
the client cannot distinguish whether it is truly harmful or
harmless media falsely reported as harmful media. To this end,
dH (w, bI nd) is computed through Verification ran between the
client and the server.

In the context of plaintext, dH (w, bI nd) can be obtained by
bit-addition, i.e., dH (w, bI nd) = wi (1− bi

I nd)+ (1−wi)bi
I nd ,

where wi and bi
I nd represent the i-th bit of the binary

hash string w and bI nd , respectively. A naive method could
have the server calculate Epks (b

i
I nd) (Epk(·) is an encryption

algorithm under pk) for each bit location i utilizing the Paillier
cryptosystem [17]. After receiving the encrypted represen-
tation

{
Epks (b

1
I nd), Epks (b

2
I nd) . . . Epks (b

l
I nd)

}
, the client can

compute C =
∑l

i=1 Epks (b
i
I nd) ·pks (1−pks wi)+pks (1−pks

Epks (b
i
I nd)) ·pks wi . Finally, the server can get the Hamming

distance dH (w, bI nd) = Dsks (C) (Dsk(·) is a decryption
algorithm under sk). However, in our experiments, we found
that the encryption algorithm of the Paillier cryptosystem is
computationally expensive and leads to high latency.

To reduce the online overhead, we apply the optimization
means proposed in SCiFI [43]. First, the server chooses a
random l bit binary string r and sends the encryption of
these bits to the client upon successfully registering a user
in the offline pre-processing phase. In the online identification
phase, when the server receives I nd, it sends r ⊕ bI nd to
the client. The client then computes m = r ⊕ bI nd ⊕ w.
Second, the computation of the Hamming distance of w and
bI nd is converted to homomorphic addition or subtraction on
Epks (r

1), . . . , Epks (r
l). For each bit location i , the client adds

Epks (r
i) to the sum, if mi

= 0, or adds 1−Epks (r
i) if mi

= 1.
Suppose n denotes the number of bits in m which are equal
to 1, the encryption of the Hamming distance can be computed
as C =

∑
mi=0 Epks (r

i)−
∑

mi=1 Epks (r
i)+ Epks (n).

The server then can compute Dsks (C) to obtain the Ham-
ming distance dH (w, bI nd). If dH (w, b) ≤ δH , the server
would warn users against abusive content. In extreme cases,
where users share criminal media, such as CSAM and drug
promotional materials, the server could report the information
to the law enforcement agency to combat crimes.

In the result-revealed scheme, bI nd is hidden in r ⊕ bI nd .
Without secret key sks , the client cannot decrypt Epks (r) and
thus cannot learn any information about bI nd . The Paillier
algorithm’s semantic security ensures that Epks (r) reveals no

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on April 17,2025 at 12:46:43 UTC from IEEE Xplore. Restrictions apply.

ZHENG et al.: INSPECTING E2EE COMMUNICATION 5781

Fig. 5. The online identification phase of the result-unrevealed scheme.

information about r . Therefore, the result-revealed scheme
reveals no information about B to a client. Besides, the server
only obtains the Hamming distance between w and bI nd after
participating in Verification. As analyzed in Section III-B, it is
difficult to speculate on w-related information by virtue of
Hamming distance alone, especially when w and bI nd are not
similar. Therefore, in the result-revealed scheme, the server
cannot recover w and learn nothing about the shared media if
the media is harmless.

C. Instantiation of Result-Unrevealed Scheme
Although the result-revealed scheme protects content pri-

vacy, it provides a backdoor to the server to implement
illegitimate surveillance by appending a chosen watch list
to B. Hence, a more strict form of user privacy is considered
in this section, where the result is confidential for any entity
other than the client.

Intuitively, we could achieve result-unrevealed in the
scheme described in Section V-B, if there is a way to ran-
domize C to hide the Hamming distance from the server.
We achieve a more strict form of user privacy with minor
modifications to the result-revealed scheme.

Our result-unrevealed construction preserves the basic
framework of the result-revealed scheme in that the server
constructs the private filter and offloads it to the client in
the offline pre-processing phase. The client first operates
LocalCheck when the user shares media in the online iden-
tification phase. Modifications occur in the last two steps of
the protocol, as shown in Fig 5. Before the client computes
the encryption of the Hamming distance C , it selects a secret
random number γ as the randomization factor. Subsequently,
the client computes C =

∑
mi=0 Epks (r

i)−
∑

mi=1 Epks (r
i)+

Epks (n) + Epks (γ) and sends it to the server. With this,
the Hamming distance is hidden in the randomized value
γ + dH (w, bI nd).

Since only the client knows γ , the actual Hamming dis-
tance of w and bI nd can be merely decrypted by the client.
If dH (w, b) ≤ δH , the client will notify and warn the user
at its side. In contrast to the result-revealed scheme, the
result-unrevealed scheme targets client-side notification, not
platform notification.

In the result-unrevealed scheme, the server only obtains
γ + dH (w, bI nd). Without knowledge of the client random-
ization factor γ , the server cannot undo the offset to learn
dH (w, bI nd). The security of the Paillier cryptosystem ensures
that the server cannot learn γ . Therefore, the server learns
nothing about dH (w, bI nd) and w in the result-unrevealed
scheme.

In the result-unrevealed scheme, the client obtains
dH (w, bI nd) and knows the match result. Note that revealing
the Hamming distance to the client admits to an attack on
server privacy. In the case where dH (w, bI nd) = 0, a malicious
client can recover r by computing w ⊕ r ⊕ bI nd . They
can then iteratively learn the rest of the harmful hash set.
To combat this issue, an update policy of r is introduced in
the result-unrevealed scheme. In general, the server sends a
new encrypted r to the client regularly to update it. For the
users whose shared media has been identified as suspicious
frequently in a short time, the server sends new r to these
users to update it in real-time.

The semantic security of the Paillier algorithm has been
rigorously proved in previous works [17], [43]. In the pro-
posed schemes, the unmodified Paillier algorithm is employed,
thereby maintaining its inherent security. Please kindly refer
to these works for a detailed description of its security proof.

VI. EVALUATION

A. Experimental Setup
1) Data Collection: An ideal database B should contain

various types of harmful materials. However, since potential
ethical and privacy concerns, we cannot obtain them. Hence,
just like other schemes of detecting harmful media in E2EE
communications [12], [13], we aggregate images from the
public datasets and encode each image with PDQHash to form
varying sizes of B. Specifically, the public databases consist of
common objects [44], [45], faces [46], and social media [47].
For shared images at the client side, half of them are collected
from the Flickr30k [48] to simulate the shared images that are
not similar to any image in B, and the rest are generated by
modifying B to simulate a match between shared images and
harmful dataset. It is noteworthy that lacking harmful content
will not affect the evaluation of the scheme’s performance.

2) Implementation: We use a workstation equipped with
an Intel CPU@i9-10900K and 64 GB RAM running on
Linux for server-side computation. For the client side, we use
a lightweight mobile device, Xiaomi 10, with the Android
operating system v10 to execute the proposed protocols.

B. Performance of Encoding
Recall that at the beginning of building the filter, each item

in B is encoded to a sampled set to achieve a fuzzy query.
In this section, we mainly present the experimental results on
how to construct a set of efficient masks and the sensitivity of
encoding.

1) Masks Construction: The performance of masks is
closely related to the number of masks, threshold value, and
the number of sampled bits (T, t, Ns). A set of efficient
masks should preserve both small FNR and FPR with a given
threshold value t , and t should also be as small as possible.

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on April 17,2025 at 12:46:43 UTC from IEEE Xplore. Restrictions apply.

5782 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

Fig. 6. Performance of encoding operation with different parameter combinations. t is the threshold value, T is the number of masks, and Ns is the number
of sampled bits.

Fig. 7. Stats of the number of sampled bits Ns in masks.

Tuning all parameters together has its own challenges
because this is a big search space to explore. In this section,
we use the grid-search method to explore which parame-
ter combination preserves better performance. Specifically,
we first give a range [10, 150] for T , and then select T from
the range with step 10. For each T , we let t vary from 1 to
T and Ns vary from 1 to 255 (the hash string’s length is
256-bit). Based on the above parameter combinations, 286,720
sets of masks are constructed. We then evaluate these masks’
performances by computing their FNRs and FPRs on the same
dataset. Fig. 6 shows a portion of the experimental results.
Some observations about our results are as follows:

a) Better performance when Ns accounts for about 5%-
10% of the hash string’s length: As indicated in Fig. 6,
masks with a lot of sampled bits possess lower FPR, but
perform poorly on FNR. A small number of sampled bits
lead to an opposite performance. To explore the efficacious
number of sampled bits, we count the convergence rates of
the constructed masks’ FNR and FPR. Specifically, we set a
small range for threshold value, i.e., t ∈ [1, 5], and count what
Ns can make FNR and FPR become 0 simultaneously within
this interval. The statistics are reported in Fig. 7. As shown,
90% of masks’ sampled bits are 13-26, which accounts for
5%-10% of the total length of 256.

b) Larger T , better fault tolerance: On one hand, larger
T contains more information on the raw data, thus perceiving

more similar and dissimilar data. On the other hand, larger T
means more choices for t (note that t ∈ [1, T]). As shown in
Fig. 6, when T = 15, we cannot tune t and Ns to achieve
both F P R = 0 and F N R = 0. A large T can provide
more diverse trade-offs between FNR and FPR. In addi-
tion, empirical results show that for datasets with sizes of
10 thousand, 100 thousand, and 1 million, the encoding has
better performance when T is greater than 25, 35, and 55,
respectively.

To save space, we only visualize a portion of the experimen-
tal results in this part. The whole empirical data is publicly
available at Aliyundrive5 in the hope of providing valuable
insights on constructing masks with users of Entbergen.

2) Sensitivity of Encoding on Different Datasets: Based
on the above insights, we can construct a set of masks that
satisfy the desired requirements for a given dataset. In this
section, we extend our investigation to examine the sensi-
tivity/generalization of the encoding. Specifically, we explore
whether the performance remains satisfactory when applying
the encoding operation to different datasets using the same
pre-constructed masks.

We initially construct a set of masks on benchmark dataset
A, which achieves F N R = 0 and F P R = 0 under the parame-
ters (64, 4, 16). Subsequently, we apply the encoding operation
using the same pre-constructed masks on four additional
testing datasets to assess the sensitivity of the constructed
masks. The testing datasets consist of two distinct datasets
B and C, as well as two mixed datasets A+B and A+B+C
(where “+” denotes incremental update). The datasets of A,
B, and C are formed by randomly sampling 100,000 images
from the COCO dataset. The FNRs and FPRs of encoding on
these datasets are depicted in Fig. 8.

It is observed that the FNRs on the testing datasets when
the threshold value t = 4 are slightly higher than that on
the benchmark dataset (about 0%-0.015%), but they exhibit
consistent behavior. Besides, the FPRs on the testing and

5https://www.aliyundrive.com/s/swjv6qQM7g5

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on April 17,2025 at 12:46:43 UTC from IEEE Xplore. Restrictions apply.

ZHENG et al.: INSPECTING E2EE COMMUNICATION 5783

Fig. 8. Sensitivity testing of the same set of masks on different datasets.
“+” denotes the incremental update.

Fig. 9. FPR with noise budget π varying from 0.1 to 0.5, and different size
of B.

benchmark datasets are equal to 0 when the threshold value
t = 4.

Based on the above results, we can conclude that the
encoding operation is robust to loose conditions, i.e., the
margin of error caused by encoding using the same masks
on different datasets is tolerable. However, the performance
of encoding using the same masks on different datasets may
not always satisfy strict hypothetical conditions (e.g., keeping
F N R = 0). For the latter condition, one can try to decrease
the threshold value t or reconstruct new masks.

C. Performance of the PBO-FQ

1) Accuracy and Privacy Assessment: This section investi-
gates the accuracy and privacy of PBO-FQ. The accuracy of
PBO-FQ is measured by FNR and FPR. The FNR of PBO-FQ
is only affected by encoding, namely, F N RP BO−F Q =

F N Rsampling , which is evaluated in Fig. 6. The FPR of
PBO-FQ is mainly affected by noise added in. Hence,
we explore the impact of different noise budgets on the FPR
of PBO-FQ. To evaluate the FPR,6 we first establish original
filters for varying set sizes B with the same initial FPR =
0.00001 and π = 0. Subsequently, PBO-FQs with noise budget
π ranging from 0.1 to 0.5 are constructed. Fig. 9 demonstrates

6In this part, FPR refers specifically to the FPR of PBO-FQ.

TABLE I
MEMORY CONSUMPTION OF PBO-FQ (Bx,y , L) WITH T = 32

FOR VARYING SET SIZES |B| AND NOISE BUDGET π

that the FPR increases when π rise. As for privacy, we follow
the prior works [14], FPR is used as a metric for the privacy
protection capability of PBO-FQ. As shown in Fig 9, a larger π

leads to a higher FPR, which increases privacy. The designed
PBO-FQ provides a method for the moderation party to protect
the privacy of the harmful hash set by flexibly tuning the noise
budget.

2) Memory Assessment: The proposed filter PBO-FQ con-
sists of a 2-dimensional array Bx,y and a linked list L,
which occupies the most memory. Table I shows the memory
consumption of Bx,y and L for varying set sizes |B| and noise
budget π . The memory consumption will increase significantly
with the rise of the set sizes |B| as shown in Table I. Although
the memory size of Bx,y remains constant with the increase
of π , the total memory size of PBO-FQ would increase as the
random indices are appended to the linked list. We investigated
the mobile phones sold top 100 on Amazon and JD.com.
Among them, the minimum memory provided is 64 GB.
Hence, the memory consumption of the proposed schemes is
acceptable for current mobile phones.

D. Performance of Entbergen

This section presents the performance results of Ent-
bergen and compares them with Kulshrestha and Mayer’s
scheme [12]. Given the differences between Entbergen and
the schemes of Hua et al. [13] and Apple [29] in security
definitions and functions, it is biased to directly compare with
these schemes’ performances.

1) Accuracy of Entbergen: The deterministic inspection
ability of Verification algorithm (i.e., using homomorphic
encryption) in Entbergen could eliminate all the FP raised in
local check of PBO-FQ. However, there is still an accuracy
loss due to FN in Entbergen. The FNR of Entbergen is
equivalent to that of the plaintext algorithm, because FN is
totally caused by the utilized perceptual hash functions.

This part focuses on evaluating the FNR of the PDQHash
employed in Entbergen to evaluate its robustness against image
transformations. We conduct the evaluation by compiling an
image dataset, then examining the perceptual hash Ham-
ming distance between each original image and its similar
image. We randomly sample 10,000 images from the COCO
2017 unlabeled image dataset [44] and apply 3 transformations
to each image. The transformations reflect possible quality loss
(quality compression) and noise impacting (Gaussian noise
addition) in transmission, and possible user action to make
images visually appealing (gamma correction). We test six
extents for each transformation. Specifically, 1) the extents of
quality compression are sampled as c = {1, 10, 20, 30, 50, 80}
from [0%, 100%], where smaller c indicates more severe

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on April 17,2025 at 12:46:43 UTC from IEEE Xplore. Restrictions apply.

5784 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

Fig. 10. Heatmap of FNR of PDQHash under different transformations. The
color bar on the right shows how the colors and FNR values are mapped, and
the numbers on the bottom correspond to 6 different extents of transformation
(the transformation extent is not proportional to the number).

TABLE II
OFFLINE CPU EXECUTION TIME OF CONSTRUCTING

MASKS FOR VARYING SET SIZES |B|

quality loss, 2) the extents of Gaussian noise addition are
sampled as θ = {0.01, 0.02, 0.04, 0.06, 0.08, 0.10}, where
larger θ indicates adding more noise, 3) the extents of gamma
correction are sampled as γ = {0.3, 0.5, 0.8, 1.3, 1.5, 1.8}
from [0, 2], where γ less than 1 can enhance the brightness of
the dark parts of the image and γ greater than 1 can improve
the contrast.

Fig. 10 illustrates the impact of different types of trans-
formations on the FNR of PDQHash when dealing with
perceptually similar images. The results demonstrate that
PDQHash could exhibit robustness when facing moderate
levels of transformations. However, when subjected to more
substantial degrees of certain transformations (such as quality
compression and gamma correction), PDQHash’s ability to
accurately detect similar images degrades. Similar to previous
schemes [12], [13] that rely on perceptual hash functions, the
proposed scheme is unavoidably susceptible to false negatives.

2) Offline Masks Construction Cost: In this part, we eval-
uate the cost of constructing a set of expected masks offline.
We set the number of sampled bits Ns in range 15-20, and
the termination condition for the mask construction procedure
is F N R = 0 AND F N R ≤ 0.005% at the same thresh-
old value t . Table II presents the CPU execution time of
constructing several sets of masks with different T (number
of masks) for varying harmful hash set sizes. As shown,
for different T and different data sizes, the server needs
0.35-10.32 hours to construct the desired masks. It is worth-
noting that the mask construction procedure occurs offline and
does not affect the efficiency of online identification of harmful
images. In practice, hash set is not frequently updated, given
the period for collecting and determining harmful media.

3) Online Identification Cost: Before presenting the com-
putation and communication costs of the online identification
phase, we specify the following parameters: l = 256, T = 64,
t = 2, Ns = 16 and π = 0.2, which are used to construct
the filter. These values were selected to balance memory
consumption and privacy, in line with studies by [14] and [15].

We present benchmark results measured on a lightweight
mobile client in Table III.

a) Online computation cost: We present the average
total execution time for varying |B| as shown in Table III.
In the proposed schemes, the execution time varies much
between shared images that match an item in B and those
that do not, due to Entbergen’s capability of inspecting dif-
ferentially. The execution times of the result-revealed scheme
and the result-unrevealed scheme are not much different.
In both result-revealed and unrevealed schemes, when the
user shares harmless media (do not match with any item
in B), the client returns the check results in real-time, under
1 second. Even in the user share a suspicious media sce-
nario (match with items in B), the proposed schemes also
achieve promising performance (3.04 seconds for large-scale
database |B| = 223).

b) Online communication cost: As shown in Table III,
the online communication cost of the proposed schemes varies
across different types of shared media. Especially when the
shared images are harmless, the communication cost is 0
benefiting from the client’s local-check capability. When the
shared images are suspicious, the proposed schemes achieve
at most 4.33 KB communication cost, which indicates that
our protocols can still operate effectively in poor network
communication environments.

4) Comparison With Prior Art: We compare the perfor-
mance of Entbergen with the state-of-the-art work [12], which
has a consistent security model as this work. Kulshrestha et al.
propose to initially map similar items in the harmful hash
set to the same bucket using locality-sensitive hashing (LSH)
techniques, and then use private information retrieval to assist
the client in privately retrieving a set of encrypted buckets
that contain hashes similar to the shared image from the
server. After that, the client could perform matching tests on
ciphertexts and return the result to the server for decryption.
The computation times and communication costs are reported
in Table III. As shown, Entbergen provides an average of 36x,
compared with that of [12], speedup in execution time in
the scenario where the shared media do not match an item
in B. In another scenario where the shared media match an
item in B, Entbergen also can provide a 9x-15x speedup.
For communication cost, compared with [12], Entbergen is
observed to reduce communication costs by 176–243 times
when the shared media is identified as suspicious.

The results show that Entbergen could drastically improve
the performance of automatically inspecting harmful media
in E2EE communications regarding execution time and total
bandwidth. Due to local checking efficiency, the harmless
media, with its amount far more numerous than that of
the harmful media, can be identified in real-time without
interaction with the server in Entbergen. This is this work’s
prominent advantage compared with existing methods. Hence,
we believe that Entbergen is suitable for deployment in
real-world social networks for harmful media identification in
E2EE communications.

VII. LIMITATIONS AND FUTURE WORK

In light of the threats of harmful content, many governments
and international institutions are calling on companies to

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on April 17,2025 at 12:46:43 UTC from IEEE Xplore. Restrictions apply.

ZHENG et al.: INSPECTING E2EE COMMUNICATION 5785

TABLE III
COMPARISON OF AVERAGE TIME AND BANDWIDTH BETWEEN Entbergen AND PRIOR METHODS. H L M AND S S M

DENOTE HARMLESS MEDIA AND SUSPICIOUS MEDIA IDENTIFIED BY PBO-FQ, RESPECTIVELY

reserve a ‘backdoor’ for government and law enforcement
departments to access encrypted content for public safety.
However, well-known cybersecurity researchers argue that
people would then have little chance to resist the expansion
of the regulation system or prevent its abuse [49]. We chal-
lenge the assertion of either this or that. We believe
that approaches reconciling public safety and privacy exist,
although it is unlikely to have a perfect solution soon. As an
attempt in this line, our solution may suffer from the following
limitations that require further investigation.

First, PBO-FQ lacks theoretical boundary guarantees on
FPR and FNR. Since multiple factors (e.g., sampling param-
eters and adding perturbation data) will impact FPR and
FNR, it is hard to deduce the relations theoretically. In other
words, the current version of Entbergen lacks a theoretical
guarantee on media inspection. We only manage to give
some empirical suggestions on setting the filter parameters.
Although not robust enough, we believe that leaving the
setting to the service provider somehow facilitates tunable
performance in their own checking contexts. As a general
guideline evaluated in Section VI-C, one can use small t
to make the filter sensitive to harmful ingredients (reducing
FNR) while can use light noise injection to reduce FPR
effectively.

Second, updating the harmful hash set would incur repeated
filter downloading. The harmful hash set will dynamically add
new hashes for different harmful media, making the local
filter inconsistent with the global set. Pushing each update
to every client would impose high communication costs.
In practice, the update and downloading shall be performed
periodically for minor maintenance and communication costs.
In addition, we also plan to investigate the incremental
update of the PBO-FQ filter to provide benign dynamic
properties.

Third, although the memory footprint of PBO-FQ is afford-
able (40 MB-900 MB in our evaluation) for current mobile
devices, qualitative user acceptance for such overhead remains
to be studied. Unlike other probabilistic data structures, PBO-
FQ is not characterized by the advantage of space efficiency,
as PBO-FQ includes a linked list to record indices for achiev-
ing fuzzy queries and reducing false positives. Future work
will explore user sensitivity to memory cost and compact
encoding techniques for reducing memory consumption for
this issue.

Fourth, the proposed constructions might increase the attack
surface for E2EE services. Entbergen reveals a Hamming dis-
tance to the server or client. Although it is difficult to speculate
on w or B-related information under Hamming distance alone,
the Hamming distance still provides additional information,
which may be somehow used by advanced attackers for a
possible client or server privacy breach. A possible method is
integrating oblivious transfer (OT) [50] to the system to hide
the Hamming distance for better robustness. However, this will
cause a huge latency as the OT protocol is computationally
expensive. It would be an interesting topic to explore an
effective way to hide the Hamming distance.

VIII. CONCLUSION

Aiming to combat the issue of harmful media moderation
in E2EE communications, we propose a novel harmful media
identification framework, named Entbergen. It explores the
prospect of a novel approach – inspecting the media differ-
entially. To achieve this goal, we first design a novel private
filter named PBO-FQ. The filter supports checking whether
an element is similar to a certain item in a harmful database.
Meanwhile, it preserves the harmful materials’ privacy by
hash-mapping the binary string in the harmful database and
adding Laplace noise to the output of the filter. Entbergen then
utilizes the Paillier cryptosystem and randomization means
to privately compute the Hamming distance between the
media identified as suspicious by PBO-FQ and its similar
hashes to eliminate false positives’ impact. The comprehensive
evaluation and privacy analysis with varying size sets and
lightweight mobile devices demonstrate that Entbergen trades
acceptable memory consumption for superior performance in
computation and communication.

APPENDIX
DETAILED DESCRIPTION OF TECHNIQUES

IN SECTION III-C

A. Encoding
The key idea of the encoding operation is to translate the

closeness of two hashes into the t-out-of-T set-based matching
without sacrificing accuracy [15]. Given a hash string x , the
operation encodes it into a set S = {si |si = x ∧ maski }, where
i ∈ [1, T], mask is a randomly generated projection hash
string and has the same length with x , and ∧ denotes AND

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on April 17,2025 at 12:46:43 UTC from IEEE Xplore. Restrictions apply.

5786 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

Fig. 11. Structure of the 2DBF.

operation. For another hash string y, it can be encoded into
a set S′ using identical masks, i.e., S′ = {si |si = y ∧ maski }.
Finally, if x and y are Hamming-close, at least t items in
S′ and S will be the same. For notation conciseness, we use
Encode(·) to denote the sampling algorithm.

B. 2-Dimensional Bloom Filter

As an extension of the conventional BF, the 2DBF possesses
a faster query time, lower memory size, and higher accuracy.
In particular, 2DBF only requires one hash function and maps
each item to one bit [16], [36]. Fig. 11 shows a structure of a
2DBF Bx,y , where x and y are dimensions of it. Bx,y contains
x × y cells, and each cell’s length is σ -bits, wherein each bit
is initialized zero. To insert an item into the filter, we first
compute a value h by inputting the item to a hash function.
Then, we need to perform three times modulus operations:
i ← h mod x , j ← h mod y, and p ← h mod σ . i and
j jointly locate a particular cell, and p place the item in
a specific bit in that cell. Assuming Bi, j,p denotes that bit,
the item can be inserted into the filter by setting Bi, j,p = 1.
To query if an item is in Bx,y , the same operations are required
to perform. If the particular bit’s value equals 1, the input item
is a member of the inserted set.

C. Differential Privacy

DP is a theoretical framework for ensuring the privacy
of individual-level data when performing statistical analysis of
privacy-sensitive datasets. Since DP is a statistical property
of the behavior of the randomized function, it is independent
of the computational power and auxiliary information available
to the adversary. Dwork et al. [51] achieved DP using the
Laplace noise mechanism. It can be briefly described as
follows. Let L (λ) be the Laplace distribution whose density
function is h (x) = 1

2 exp− |X−µ|
λ

where µ is a mean and
λ > 0 is a scale factor. For a given query function f
and a database X , a randomized mechanism M f that returns
f (X) + Y as an answer where Y is drawn from L

(
△ f
ϵ

)
,

satisfies ϵ-DP.

D. Paillier Cryptosystem

A cryptographic tool that we use is the Paillier cryptosys-
tem [17]. The security of the Paillier cryptosystem relies on the

hardness of the decisional composite residuosity assumption
(DCRA), which states that given an integer n = pq, where
p and q are two large prime numbers, it is computationally
infeasible to determine whether a given residue y is a quadratic
residue mod n or not.

The basic form of the Paillier scheme involves the following
functions:
• KeyGen: This function produces the public and private

keys. It first selects two large prime numbers p and q
such that pq and (p − 1)(q − 1) are relatively prime.
It then computes n = pq, and λ = lcm(p − 1, q − 1),
where λ is the least common multiple of p−1 and q−1.
After that, it selects a random integer g ∈ Z∗n2 , and the
order of g is a multiple of n. Finally, it sets the public
key and private key as (n, g) and (p, q, λ).

• Enc: For a given plaintext message m, this function
returns an encrypted ciphertext c by computing c =
gmrn(mod n2), where r is a random value.

• Dec: This function takes an encrypted ciphertext c as
input and returns the plaintext message m. The plaintext
message m = L(cλ mod n2)

L(gλ mod n2)
mod n, where L(x) = x−1

n .

REFERENCES

[1] W. Bai, M. Pearson, P. G. Kelley, and M. L. Mazurek, “Improving
non-experts’ understanding of end-to-end encryption: An exploratory
study,” in Proc. IEEE Eur. Symp. Secur. Privacy Workshops, Sep. 2020,
pp. 210–219.

[2] WhatsApp. (2017). WhatsApp Encryption Overview. [Online]. Available:
https://whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf

[3] Apple. (2020). Apple Platform Security. [Online]. Available:
https://manuals.info.apple.com/MANUALS/1000/MA1902/en_US/apple-
platform-security-guide.pdf

[4] Facebook. (2017). Messenger Secret Conversations. [Online]. Available:
https://about.fb.com/wp-content/uploads/2016/07/messenger-secret-
conversations-technical-whitepaper.pdf

[5] Telegram. (2018). Telegram Mobile Protocol. [Online]. Available:
https://core.telegram.org/mtproto

[6] K. Cohn-Gordon, C. Cremers, B. Dowling, L. Garratt, and D. Stebila,
“A formal security analysis of the signal messaging protocol,” J. Cryp-
tol., vol. 33, no. 4, pp. 1914–1983, Oct. 2020.

[7] National Center for Missing & Exploited Children. (2021).
Cybertipline—By the Numbers. [Online]. Available: https://www.missing
kids.org/gethelpnow/cybertipline

[8] Facebook. (2018). How is Facebook Addressing False Infor-
mation Through Independent Fact-Checkers? [Online]. Available:
https://www.facebook.com/help/1952307158131536

[9] YouTube. (2022). How Does Youtube Combat Misinformation?
[Online]. Available: https://www.youtube.com/howyoutubeworks/our-
commitments/fighting-misinformation/#policies

[10] U.K. Department for Digital, Culture. (2020). Online Harms
White Paper. [Online]. Available: https://www.gov.uk/government/
consultations/online-harms-white-paper/online-harms-white-paper

[11] EPR Service. (2021). Liability of Online Platforms. [Online]. Available:
https://www.europarl.europa.eu/RegData/etudes/STUD/2021/656318/
EPRS_STU(2021)656318_EN.pdf

[12] A. Kulshrestha and J. Mayer, “Identifying harmful media in end-to-end
encrypted communication: Efficient private membership computation,”
in Proc. USENIX Secur. Symp., 2021, pp. 893–910.

[13] Y. Hua, A. Namavari, K. Cheng, M. Naaman, and T. Ristenpart,
“Increasing adversarial uncertainty to scale private similarity testing,”
in Proc. USENIX Secur. Symp., 2022, pp. 1777–1794.

[14] W. Xue, D. Vatsalan, W. Hu, and A. Seneviratne, “Sequence data match-
ing and beyond: New privacy-preserving primitives based on Bloom
filters,” IEEE Trans. Inf. Forensics Security, vol. 15, pp. 2973–2987,
2020.

[15] E. Uzun, S. P. Chung, V. Kolesnikov, A. Boldyreva, and W. Lee, “Fuzzy
labeled private set intersection with applications to private real-time
biometric search,” in Proc. USENIX Secur. Symp., 2021, pp. 911–928.

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on April 17,2025 at 12:46:43 UTC from IEEE Xplore. Restrictions apply.

ZHENG et al.: INSPECTING E2EE COMMUNICATION 5787

[16] R. Patgiri, S. Nayak, and S. K. Borgohain, “rDBF: A r-dimensional
Bloom filter for massive scale membership query,” J. Netw. Comput.
Appl., vol. 136, pp. 100–113, Jun. 2019.

[17] P. Paillier, “Public-key cryptosystems based on composite degree resid-
uosity classes,” in Proc. Int. Conf. Theory Appl. Cryptograph. Techn.
Cham, Switzerland: Springer, 1999, pp. 223–238.

[18] E. Bursztein et al., “Rethinking the detection of child sexual abuse
imagery on the internet,” in Proc. World Wide Web Conf. (WWW), 2019,
pp. 2601–2607.

[19] J. F. Clark. (2019). Protecting Innocence in a Digital World.
[Online]. Available: https://www.judiciary.senate.gov/imo/media/doc/
Clark/Testimony.pdf

[20] Internet Watch Foundation. (2021). Image Hash List. [Online].
Available: https://www.iwf.org.uk/our-technology/our-services/image-
hash-list/

[21] Canadian Centre for Child Protection. (2017). Project Arachnid.
[Online]. Available: https://projectarachnid.ca/en/#how-does-it-work

[22] Global Internet Forum to Counter Terrorism. (2017). Joint Tech Inno-
vation. [Online]. Available: https://www.gifct.org/joint-tech-innovation/

[23] Facebook. (2019). The TMK+PDQF Video-Hashing Algorithm and
the PDQ Image-Hashing Algorithm. [Online]. Available: https://
github.com/facebook/ThreatExchange/blob/master/hashing/hashing.pdf

[24] Microsoft. (2020). Photodna. [Online]. Available: https://www.
microsoft.com/en-us/photodna

[25] Facebook. (2019). Applying to Threatexchange. [Online]. Available:
https://developers.facebook.com/programs/ threatexchange/

[26] B. Coskun and N. Memon, “Confusion/diffusion capabilities of some
robust hash functions,” in Proc. 40th Annu. Conf. Inf. Sci. Syst.,
Mar. 2006, pp. 1188–1193.

[27] S. Scheffler and J. Mayer, “SoK: Content moderation for end-to-end
encryption,” 2023, arXiv:2303.03979.

[28] H. Chen, I. Chillotti, Y. Dong, O. Poburinnaya, I. Razenshteyn, and
M. S. Riazi, “SANNS: Scaling up secure approximate k-nearest neigh-
bors search,” in Proc. USENIX Secur. Symp., 2020, pp. 2111–2128.

[29] Apple Inc. CSAM Detection—Technical Summary. [Online]. Available:
https://www.apple.com/child-safety/pdf/CSAM_Detection_Tech
nical_Summary.pdf

[30] L. Liu, D. S. Roche, A. Theriault, and A. Yerukhimovich, “Fighting
fake news in encrypted messaging with the fuzzy anonymous complaint
tally system (FACTS),” 2021, arXiv:2109.04559.

[31] S. Scheffler, A. Kulshrestha, and J. Mayer, “Public verification for
private hash matching,” in Proc. IEEE Symp. Secur. Privacy, Mar. 2023,
pp. 2074–2094.

[32] L. L. Gremillion, “Designing a Bloom filter for differential file access,”
Commun. ACM, vol. 25, no. 9, pp. 600–604, Sep. 1982.

[33] O. Rottenstreich, Y. Kanizo, and I. Keslassy, “The variable-increment
counting Bloom filter,” IEEE/ACM Trans. Netw., vol. 22, no. 4,
pp. 1092–1105, Aug. 2014.

[34] A. Kirsch and M. Mitzenmacher, “Less hashing, same performance:
Building a better Bloom filter,” Random Struct. Algorithms, vol. 33,
no. 2, pp. 187–218, Sep. 2008.

[35] D. Derler, K. Gellert, T. Jager, D. Slamanig, and C. Striecks, “Bloom
filter encryption and applications to efficient forward-secret 0-RTT key
exchange,” J. Cryptol., vol. 34, no. 2, pp. 1–19, Apr. 2021.

[36] R. Patgiri, S. Nayak, and S. K. Borgohain, “PassDB: A password
database with strict privacy protocol using 3D Bloom filter,” Inf. Sci.,
vol. 539, pp. 157–176, Oct. 2020.

[37] Y. Hua, B. Xiao, B. Veeravalli, and D. Feng, “Locality-sensitive Bloom
filter for approximate membership query,” IEEE Trans. Comput., vol. 61,
no. 6, pp. 817–830, Jun. 2012.

[38] P. Indyk and R. Motwani, “Approximate nearest neighbors: Towards
removing the curse of dimensionality,” in Proc. 30th Annu. ACM Symp.
Theory Comput., 1998, pp. 604–613.

[39] X. Shu, D. Yao, and E. Bertino, “Privacy-preserving detection of
sensitive data exposure,” IEEE Trans. Inf. Forensics Security, vol. 10,
no. 5, pp. 1092–1103, May 2015.

[40] U.S. Department of Justice. (2021). International Statement: End-to-
End Encryption and Public Safety. [Online]. Available: https://www.
apple.com/child-safety/pdf/CSAM_Detection_Technical_Summary.pdf

[41] D. Cutting and J. Pedersen, “Optimization for dynamic inverted index
maintenance,” in Proc. ACM SIGIR Conf. Res. Develop. Inf. Retr., 1989,
pp. 405–411.

[42] S. Goldwasser and S. Micali, “Probabilistic encryption & how to play
mental poker keeping secret all partial information,” in Proc. 14th Annu.
ACM Symp. Theory Comput., New York, NY, USA, 1982, pp. 365–377.

[43] M. Osadchy, B. Pinkas, A. Jarrous, and B. Moskovich,
“SCiFI—A system for secure face identification,” in Proc. IEEE
Symp. Secur. Privacy, May 2010, pp. 239–254.

[44] T.-Y. Lin et al., “Microsoft COCO: Common objects in context,” in
Proc. Eur. Conf. Comput. Vis. (ECCV). Cham, Switzerland: Springer,
2014, pp. 740–755.

[45] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2009, pp. 248–255.

[46] R. Rothe, R. Timofte, and L. Van Gool, “DEX: Deep expectation of
apparent age from a single image,” in Proc. IEEE Int. Conf. Comput.
Vis. Workshop (ICCVW), Dec. 2015, pp. 252–257.

[47] W. Li, L. Wang, W. Li, E. Agustsson, and L. Van Gool, “WebVision
database: Visual learning and understanding from web data,” 2017,
arXiv:1708.02862.

[48] P. Young, A. Lai, M. Hodosh, and J. Hockenmaier, “From image
descriptions to visual denotations: New similarity metrics for semantic
inference over event descriptions,” Trans. Assoc. Comput. Linguistics,
vol. 2, pp. 67–78, Dec. 2014.

[49] H. Abelson et al., “Bugs in our pockets: The risks of client-side
scanning,” 2021, arXiv:2110.07450.

[50] M. Naor and B. Pinkas, “Computationally secure oblivious transfer,”
J. Cryptol., vol. 18, no. 1, pp. 1–35, Jan. 2005.

[51] C. Dwork and A. Roth, “The algorithmic foundations of differen-
tial privacy,” Found. Trends® Theor. Comput. Sci., vol. 9, nos. 3–4,
pp. 211–407, 2014.

Tengfei Zheng received the Ph.D. degree in com-
puter science and technology from the National Uni-
versity of Defense Technology, Changsha, in 2023.
His current research interests include AI security and
data privacy.

Tongqing Zhou received the bachelor’s, master’s,
and Ph.D. degrees in computer science and tech-
nology from the National University of Defense
Technology, Changsha, in 2012, 2014, and 2018,
respectively. He is currently an Assistant Researcher
with the College of Computer, NUDT. His cur-
rent research interests include ubiquitous computing,
mobile sensing, and data privacy.

Kai Lu received the B.S. and Ph.D. degrees in com-
puter science and technology from the National Uni-
versity of Defense Technology (NUDT), Changsha,
in 1995 and 1999, respectively. He is currently a Full
Professor with the College of Computer, NUDT. His
current research interests include operating systems,
parallel computing, and security.

Zhiping Cai received the B.Eng., M.A.Sc., and
Ph.D. degrees in computer science and technology
from the National University of Defense Technology
(NUDT), China, in 1996, 2002, and 2005, respec-
tively. He is currently a Full Professor with the
College of Computer, NUDT. His current research
interests include network security and data privacy.
He is a Senior Member of CCF.

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on April 17,2025 at 12:46:43 UTC from IEEE Xplore. Restrictions apply.

